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Abstract—Multipath forwarding consists of using multiple paths
simultaneously to transport data over the network. While most
such techniques require endpoint modifications, we invesigate how
multipath forwarding can be done inside the network, transpar-
ently to endpoint hosts. With such a network-centric approach,
packet reordering becomes a critical issue as it may cause critical
performance degradation. We present a Software Defined Network
architecture which automatically sets up multipath forwarding,
including solutions for reordering and performace improvement,
both at the sending side through multipath scheduling algorithms,
and the receiver side, by resequencing out-of-order packets in a
dedicated in-network buffer. We implemented a prototype with
commonly available technology and evaluated it in both emulated
and real networks. Our results show consistent throughput
improvements, thanks to the use of aggregated path capacity.
We give comparisons to Multipath TCP, where we show our
approach can achieve a similar performance while offering the
advantage of endpoint transparency.

Index Terms—multipath transport, SDN, OpenFlow, Open
vSwitch

I. INTRODUCTION

IP networks are inherently multipath. Yet, the existence of
multiple paths between two endpoints is rarely leveraged. This
issue can be ascribed to the fact that only lower layers can
establish an accurate view of the network topology, while
only upper layers are able to control transmission rate and
end-to-end connectivity.

Nonetheless, solutions have been proposed at various layers
to enable specific use-cases and improve performance. Ex-
amples are given at layers 2–3 for data-centres with, e.g.,
BCube [1] or DCell [2], or at layer 4 for multi-homed devices
with Multipath TCP (MPTCP) [3] or Concurrent Multipath
Transfer for SCTP (CMT-SCTP) [4].

The most prominently quoted motivations for multipath are
the potential for continuity of connectivity in case of path
failure or congestion (i.e., fail-over or load-balancing), or
capacity aggregation to speed up high volume transfers between
endpoints [e.g., 5, for MPTCP].

Layer-2 multipath topologies [e.g., 6], have been successfully
deployed and used within fully-controlled data-centre networks.
End-to-end multipath support throughout the public Internet
is however limited [7] due to the requirement to modify end-
hosts. Heterogeneous network paths also worsen the issue
of packet reordering, creating head-of-line blocking delays,

and sometimes leading to worse performance than single-path
transfers [8].

In this paper,1 we attempt to join both lower- and upper-layer
approaches and merge their successes through the use of SDN.
We aim to satisfy the following goals: capacity aggregation,
ease of end-to-end deployment, adaptivity to failures, and
automatic path computation. To this end, we introduce the
MPSDN architecture, comprising an SDN controller with better
knowledge and control of available paths than endpoint-only
layer-4 solutions, as well as modifications of the Open vSwitch
implementation and OpenFlow protocol to enable finer packet
scheduling and reordering within the network, without need
for explicit end-host support.

The solution can be deployed with either layer-2 forwarding
or layer-3 routing or tunnelling, and the controller does not
require full control of the network hops. We show that this
approach enables performance similar to MPTCP’s while lifting
the requirement for end-host modifications. The focus of this
paper is on TCP, but we note that our proposal can handle
other transport protocol in a similar fashion [9]. Our work also
allows us to identify some non-trivial issues when implementing
layer-4 switching and scheduling with SDN solutions.

The proposed mechanism can offer benefits in several scen-
arios where additional bandwidth would enhance the Quality of
Experience for users. A typical scenario is high-definition video
streaming where the bit-rate is higher than the capacity of a
single path.2 Another use-case for this proposal is that of multi-
cloud overlay networks between virtualised environments.3

In this scenario, a user controls the edges of the network
and deploys the proposed mechanism to maximise bandwidth
utilisation between clouds.

The remainder of this paper is organised as follows: The
next section reviews state of the art of multipath approaches in
line with the goals of our research. We present the proposed
architecture and its implementation in Section III and provide
a performance evaluation in both emulated conditions and
in a real multi-homed testbed in Section IV. We give some

1This paper improves on the first author’s MSc thesis but focuses on TCP
only; please refer to [9] for more details and other transport protocols.

2A video demonstration of this use-case can be found at https://www.youtube.
com/watch?v=hkgf7l9Lshw

3See, for example, Docker’s overlays https://docs.docker.com/engine/
userguide/networking/get-started-overlay/.



Table I: Comparison of characteristics and fulfilment of our
goals of state-of-the-art multipath proposals and MPSDN.
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Layer 3 X X X
Layer 4 X X ‡
SDN-based solution X X X

Bandwidth Aggregation X X X X X X
Easy Deployability X X X X X
Adaptivity to Failures X X X X X X
Load-Balancing X X X X X X X X
Automatic Path Computation X X X X X
† MPTCP was used for aggregation on top of a multihomed L2 network
‡ MPSDN uses L4 knowledge, e.g., sequence numbers, to reorder packets

insight and lessons learnt about mixing SDN and multipath in
Section V and offer concluding remarks in Section VI.

II. RELATED WORK

Multipath topologies in both layer 2 and layer 3 networks are
common, offering multiple communication options for capacity
aggregation, load-balancing, and congestion avoidance. This
section reviews the state-of-the-art of solutions proposed to
leverage those capabilities. We do this layer by layer, from 2
to 4, and offer some insight about previous uses of SDN for
this purpose.

Table I summarizes the discussed work in light of our
design goals. With “easy deployability” we denote the use
of software/hardware that can be incrementally deployed and
used on real networks and that is not only an experimental
proof-of-concept.

A. Link-layer Multipath

The spanning tree (STP) protocol is extensively used on L2
networks to ensure loop-free forwarding in Ethernet networks.
It has the downside of actively pruning paths from the networks
which could be utilized for increased bandwidth. Cisco’s layer-2
multipath [10] attempts to remediate this by enabling the use of
alternate paths, while the IEEE 802.3ad amendment introduces
provisions for link aggregation [11]. Neither solution however
offers full multipath support across complex topologies.

TRILL (Transparent Interconnection of Lots of Links) [12]
uses IS-IS routing to ensure that every bridge has full know-
ledge of the network, allowing for the creating of an op-
timal forwarding tree with support for Equal-Cost Multipath
(ECMP) [13]. 802.1aq SPB (Shortest Path Bridging) [14] also
leverages IS-IS to compute a shortest path through the network.
A designated MAC address (used with SPB-MAC) or VLAN
ID (SPB-VID) is assigned for each switch, and received frames
are encapsulated within it.

TODO: Encapsulated in what?

Packets travel on the shortest path to the edge switch, which
again de-encapsulates the frame and sends it to the end device.

Neither of these techniques allows aggregated bandwidth be-
cause of their use of ECMP-like hashing.

MPTCP, discussed in more details below, has also been
suggested as a way to leverage multiple layer-2 paths in data-
centres and improve performance and robustness [15]. It has
been shown that, with a sufficiently high number of subflows,
it is possible to aggregate capacity and increase load-sharing.
The downsides of this approach are the necessary end-host
support, the lack of multipath capability for other protocols
such as UDP or SCTP, and its limitation to data-centres.

B. Network-layer multipath

Flowlet Aware Routing Engine (FLARE) [16] is a dynamic
multipath load balancing technique. It uses time delays between
packets of the same flow to split them into flowlets that may
be distributed on different paths. This allows to distribute the
traffic between available paths more accurately, as compared to
flow-based distribution, while maintaining in-order arrival at the
receiver. FLARE has shown, through trace-driven simulations
of tier-1 and regional ISPs, that highly accurate traffic splitting
can be implemented with very low state overhead and negligible
impact on packet reordering. However its focus is on load-
balancing and does not offer capacity aggregation.

The Harp network architecture prioritizes foreground traffic
and uses multipath to dissipate background transfers [17]. It
can leverage path diversity and load imbalance in the Internet to
tailor network resource allocation to human needs (foreground
vs. background traffic). It also provides better fairness and util-
ization compared to single-path end-host protocols. Moreover,
it can be deployed at either end-hosts or enterprise gateways,
thereby aligning the incentive for deployment with the goals
of network customers. Packet reordering is performed at the
exit gateways to cope with different path latencies. Its focus on
background traffic at the exception of all other traffic, however,
makes it ill-fitted for our goals.

C. Transport-layer multipath

Extensions to two main transport protocols have been pro-
posed to support multipath. MPTCP [3] introduced a new set of
TCP options to enable negotiation between multipath-capable
hosts while using backward-compatible TCP packets on each
path. SCTP’s fail-over supports load-balancing [18] and has
been extended to support concurrent multipath transfer [19].
Despite their intrinsic limitation to a single transport protocol,
those approaches have seen reasonable success in the lab, with
their main barrier to deployment being the need for end-host
support.

A very active area of research with transport-layer multipath
is enabling packet schedulers to deal with path asymmetry
without introducing head-of-line blocking [8]. Most schedulers
attempt to distribute packets unevenly or out-of-order across
available paths, so they arrive in order at the destination [20]–
[26]. An adequate scheduling policy is important to enable the
benefits of capacity aggregation in heterogeneous scenarios.
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Figure 1: Multipath SDN Architecture

D. SDN-based multipath solutions

Multipath in OpenFlow has been proposed back in 20104 and
later implemented through Groups (such as Select or All) to
enable L2/L3 multipath forwarding for load-balancing purposes.
It has since then been researched extensively [27]–[29], but
none of these approaches allows for aggregated bandwidth as
they all rely on flow hashing (as does OpenFlow at its core).

Adaptive Multipath Routing (AMR) has been used to perform
layer-2 aggregation in data-centres [30]. It splits flows over
multiple paths and introduces an architecture which adapts
dynamically to network congestion and link failures. An inter-
esting aspect of this approach is its computation of max-flow
paths throughout the network to determine the best combination
to use. An analogous technique has also been used in OLiMPS
(OpenFlow Link-layer Multipath Switching) to utilize robust
inter-domain connectivity over multiple physical links.

Overall, existing proposals can either not provide aggregated
path capacity or are limited to layer-2 forwarding. Layer-4
solutions, while supporting aggregation as their main advantage,
lack in deployability as they require end-host support. AMR
comes closest to our goals, but is an L2-only solution. Moving
forwards, we propose an architecture able to handle both layer-2
and -3 multipath scenarios, while accounting for the scheduling
and reordering requirements of heterogeneous paths.

III. ARCHITECTURE

Our proposed architecture for an endpoint-transparent mul-
tipath network consists of a centralized controller with know-
ledge of the network topology which dynamically sets up
loop-less forwarding rules on SDN switches under its control
(Figure 1). For the presented proof-of-concept, we focus on
two path scenarios only.

4http://archive.openflow.org/wk/index.php/Multipath_Proposal

The controller has some knowledge of the network state and
views the underlying infrastructure as a directed graph, where
costs between switches are given by the latency and capacity
of the paths. With this knowledge it computes the optimal
multipath forwarding table to send data from one node to the
other, maximizing the capacity usage with an algorithm based
on the maximum-flow problem. This is similar to AMR [30],
but we extend it to layer-3 infrastructures. In case of failure
or heavy congestion, the controller will compute an updated
forwarding table and push it to the SDN switches.

In the remainder of this section, we present the key concepts
of our architecture: the topology discovery and path selection,
as well as the packet scheduler and reordering buffer. We also
describe how we implemented this architecture in the Ryu
OpenFlow controller5 and how we modified Open vSwitch to
support packet reordering on edge switches.

A. Topology Discovery

In order to discover the network topology, we both query
the forwarding devices using the Link Layer Discovery Pro-
tocol (LLDP) when available (i.e., layer 2) or deploy ad hoc
mechanisms to estimate end-to-end latency and throughput
(i.e., layer 3). In particular, we estimate path latency with a
slightly modified Bouet’s algorithm [31], which yields high
accuracy and has a low network footprint. Unlike NetFlow or
measurements using ICMP echo requests, this does not require
additional servers or components. The algorithm is run using
controller-to-switch messages only.

We use port statistics counters for bandwidth estimation.
As shown in OpenNetMon [32], we can accurately monitor a
flow’s throughput by probing flow statistics periodically. The
controller uses a similar approach by periodically requesting
port statistic messages from its switches (every 2 seconds in
the current implementation). The per-port available capacity
is determined by subtracting the maximum capacity with the
utilization from the last period of observation.

B. Path Selection

In order to maximize the aggregated capacity of multiple
paths, the controller uses an algorithm similar to the Edmonds-
Karp algorithm to solve the maximum flow problem, with a
Breadth First Search to find the augmenting paths. It uses the
Dijkstra algorithm with min-priority queue to find the shortest
paths from source to destination. The estimated available
bandwidth between the nodes is used to maximize the overall
throughput between the sender and the receiver.

Pilot experiments showed that, in a similar manner as for
layer-4 multipath, not all paths are compatible and a very high
delay imbalance was detrimental. To select compatible paths,
we introduce the concept of maximum delay imbalance,

MDI =
dmax

dmax + dmin
− 0.5 , (1)

where dmin and dmax denote the minimal and maximal delays
from the candidate paths, and 0.5 a rescaling factor. Its range

5https://osrg.github.io/ryu/



is [0, 0.5], where 0 represents completely balanced paths and
0.5 is the limit of imbalance.

This metric is used for different purposes in our solution.
If the computed MDI among the selected paths is higher
than a reordering threshold, a flow reordering rule is set up
at the receiving edge router. Similarly, if the MDI is above
another threshold, the delay difference is considered too high
to provide any aggregated capacity advantage. We determine
those thresholds in Section IV

C. Packet Scheduler

The common challenge for every multipath protocol is
deciding how to send data over the available paths. The task
is usually done by a scheduling algorithm. This scheduler can
rarely work in isolation as it needs to adapt to changing path
characteristics, mainly in terms of delays and congestion. There
are many approaches to multipath scheduling [20], ranging
from simple information agnostic round-robin approaches to
omniscient algorithms.

To maximize the performance, a multipath scheduler should
push the right amount of data over different paths, without
overloading already congested ones and ensuring full utiliz-
ation of the available capacity. MPTCP uses subflows with
independent congestion windows [3], [5] and can buffer some
packets before sending them on the desired path [24], [26].

In the case of in-network multipath, however, neither the per-
path window information nor the advance buffering option are
readily available. To maximize application throughput, we use a
Weighted Round-Robin (WRR) scheduler which sends bursts of
packets along the paths, weighted according to their capacity as
wj = cj/

∑n
i ci, where wj is the weight associated with path j,

and cj its estimated capacity. While not as fine-grained as layer-
4 scheduling, this approach maps well to OpenFlow’s Groups
approach and our measurements, presented in Section IV, show
the performance difference is acceptable.

D. Reordering Mechanism

By selecting multiple paths with potentially different char-
acteristics, our mechanism introduces packet reordering. To
avoid a performance impact due to out-of-order packets, we
implemented a corrective mechanism that can be deployed on
the edge switches.

Layer-4 multipath algorithms (Section II) solve this problem
by using out-of-order queues at the receiver, which resequence
packets in the desired order prior to passing them to the
application.

We introduce a resequencing buffer at the receiving edge
switch in order to address this problem in a similar fashion,
albeit without the receiver node’s involvement. The buffer
temporarily stores packets received ahead of time. It does
so by maintaining a record of the next expected sequence
number for each flow, in a similar fashion as TCP, and only
forwards packets if the sequence numbers match. This is show
in Algorithm 1.

This can cause a problem in case packets are lost prior to
reaching the resequencing buffer. To avoid timeouts at the

Algorithm 1 Resequencing for each flow

Require: buffer B of size S
Require: buffering threshold T
Require: loss-recovery factor LRF

while pkt← receive packet do
if pkt is SYN then
expected← pkt.seq + pkt.size
forward pkt

else if pkt.seq < expected then
forward pkt {immediately forward duplicates}

else if pkt.seq = expected then
for all p ∈ B|p.seq < expected do

forward p {send all delayed packets in order}
end for
forward pkt
expected← expected+ pkt.size

else if B.use > T then
store pkt in B
for all p ∈ B do

forward p {send all packets in order, ignoring gaps}
lastp < −p

end for
expected ← lastp.seq + lastp.size · LRF {account
for bursty losses}

else if B.use < S then
store pkt in B

else
spkt← p ∈ B|p.seq = minp∈B(p.seq)
if spkt.seq ≤ pkt.seq then

send spkt {send the packet with the lowest sequence
number}
store pkt in B

else
forward pkt

end if
end if

end while

TCP sender, our proposed solution implements dynamic buffer
sizes based on a buffering threshold T , sized as a function
of the MDI and the bandwidths of the selected paths for the
flow. If the number of packets buffered for a flow exceeds
its threshold, the buffer releases them all in order, ignoring
gaps. This may trigger some unnecessary retransmissions, but
endpoints supporting SACK should see only minimal impact.

Additionally, to protect against bursts of losses in the net-
work, the next expected sequence is further increased by a
loss-recovery factor LRF after a threshold-triggered release.
This causes the buffer to forward packets with lower sequence
numbers in their order of arrival, ignoring other lost packets
of the burst, until the new expected value is reached, thereby
ignoring any other missing packets from the loss burst. Ex-
perimental tests showed that a value of 20 allowed the buffer
to recover from bursty losses while limiting the amount of
out-of-order packets during this recovery period.
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E. Implementation Considerations
We implemented the WRR scheduler using the existing

Select group in Open vSwitch. The resequencing buffer required
the addition of a new group in Open vSwitch, as well as a
new OpenFlow message to configure it. The code for these
modifications is available online6, as is that of our Ryu-based
controller.7

While layer-2 path capacity was estimated using port statist-
ics, a dynamic layer-3 equivalent was not fully implemented—
the controller currently needs manual configuration of path
capacities. We expect the switches could use client traffic to
implement methods such as packet dispersion [33]. Such an
approach is, however, beyond the scope of this paper.

IV. PERFORMANCE EVALUATION

We evaluated MPSDN using both emulation and large-
scale deployment on a multihomed testbed. We first used
emulation of an L2 topology to explore the sensitivity of our
approach to variations in conditions. We then performed use-
case experiments in real-world L3 deployments to confirm
the feasibility of our solution. In both cases, we provide
comparisons with MPTCP.

All measurements were done using Linux with default TCP
parameters. In particular this means that CUBIC was used as the
congestion avoidance algorithm for all TCP flows throughout
this section.

A. Emulation
We used Mininet [34] to create an L2 topology mirroring

the East Asia Internet Backbone,8, shown in Figure 2. As our
setup could not emulate the Gigabit speeds of the backbone,
we scaled the capacities down. However, we chose realistic
delays between the routers, as estimated by probing their real
counterparts with ICMP echo requests.

1) Throughput Measurements: In the following experiments,
we used iperf 3,9 netperfmeter [35], netcat and
d-itg [36] to generate traffic. We measured flow parameters
(cwnd, rtt) with ss and captcp.

6https://github.com/dariobanfi/ovs-multipath
7https://github.com/dariobanfi/multipath-sdn-controller
8http://maps.level3.com/default/
9http://software.es.net/iperf/

Table II: Evaluation of throughput with MPSDN multipath
forwarding.

Path Capacity Latency Throughput

BEJ–SHA–TOK–HAW 10Mbit/s 95 ms
18.2Mbit/sBEJ–HKG–MAN–HAW 10Mbit/s 95 ms

TOK–SIN–SYD 10Mbit/s 60 ms
26.8Mbit/sTOK–SYD 20Mbit/s 60 ms
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Figure 3: Impact of the maximum delay imbalance MDI on the
aggregated throughput, with and without resequencing buffer
(base latency 25ms, 10Mbit/s paths, 15-seconds iperf)

We measured the throughput our solution achieved without
cross-traffic. The results are shown in Table II. In this first
scenario, the capacity was close to the aggregated bandwidth
of the single paths.

We also measured the throughput achieved with unbalanced
latencies. The result of these measurements is shown in Figure 3.
These measurements were performed on a simple topology
with just two direct paths. One path has a 25ms latency, the
other path’s latency is increased to obtain the different MDI
values (x-axis). The measurements were done both with and
without enabling the resequencing buffer. The effectiveness of
the buffer within a certain range of MDI values can be clearly
observed.

2) MDI cutoffs: Figure 3 also shows that using the resequen-
cing buffer for MDIs beyond 0.15 improves performance quite
vastly, while for path capacities beyond 0.4 the aggregated
bandwidth falls below the bandwidth of a single path even
when using the resequencing buffer.

3) Intra-flow fairness: We also verified that introducing
MPSDN in a network does not have an adverse effect on intra-
flow fairness. We started 10 30-second iperf transmissions
over an MPSDN network and reported the flow throughput
every second. We computed Jain’s fairness index [37] for each
period. Overall, the mean fairness was 0.81 (σ = 0.042), which
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we find to be quite good.10

4) Impact of path congestion on transport: We then eval-
uated the resilience of our approach to dynamic congestion,
both in terms of path recomputation and transport resilience
to changes.

We used the same topology and source/destination as before.
At time T1, we start an iperf UDP with a target rate of
1Gbit/s to completely saturate the link between Singapore
(SIN) and Sydney (SYD). At T2, our controller measures the
available path capacity and recomputes bucket weights. As one
path is completely congested, it switches to forwarding on one
path only.

Figure 4a shows the impact of the path congestion on the
transport’s throughput, where it quickly drops to 0 before our
mechanism reconfigures the paths, after which the throughput
slowly grows to the new one-path capacity of 10 Mbit/s.

While the controller adequately updated the path selection,
the transport is badly impacted during the congested period—
even though only one path is congested—and slow to respond
after the path recomputation. This is due to the TCP sender
only maintaining a single congestion window for all the paths,
and reducing it drastically when losses start to occur on the
congested path, as shown in Figure 4b.

5) Comparison with MPTCP: MPTCP and MPSDN differ
in the requirements they impose on implementing systems:
multi-homing in the case of MPTCP, and SDN support with
measurement capability for MPSDN. Nonetheless, they share

10The best fairness index would be 1, but anything above 0.5 is considered
“reasonably fair” [38].

the same objective of capacity aggregation. We therefore
compared the goodput achieved by our solution to MPTCP’s,
in systematic experiments varying the delay on the second
path.

We set up a basic topology composed of just two hosts. For
MPTCP, the hosts are multi-addressed. For MPSDN, each host
has only one IP address, but there are two available paths in
the network. For MPTCP, we use two subflows and the default
scheduler. The sender starts a 30 seconds transmission; the
application-layer goodput is measured at the receiver.

Figure 5 shows the TCP goodput for the single paths and
compares it to MPTCP and MPSDN performance. In sub-
figures (b) and (c), which have a high delay difference (25ms
and 50ms corresponding to an MDI of 0.17; 25ms and 100ms
corresponding to an MDI of 0.3) the reordering buffer is used.

Our results show that MPSDN performance remains close
to that of MPTCP when the paths are balanced (although
with a higher variance) and performs slightly worse, but still
comparable, when the delay differences are high.

B. Real-world deployment

We now verify that our proposal is usable in real world
deployments. The most notable difference is that, instead
of an L2 topology, we now consider an L3 network where
we only control the edge switches. Apart from quantitative
measurements, our goal is also to qualitatively explore the
deployability of our solution over the real Internet.

We deployed our MPSDN solution on the NorNet11 Core
testbed, which offers distributed, multihomed, and program-
mable nodes [39], where static IP tunnels are established to
form a full mesh between nodes, and packets are routed based
on their source/destination address.

We ran our experiments on Ubuntu 14.04 LTS virtual
machines with kernel 3.13.0-68-generic, 1 GB RAM, and
2.60 GHz CPUs. The VMs were multi-addressed and used
the aforementioned IP tunnelling. We simply installed our
modified Open vSwitch directly on the VMs and used it to
route the traffic. This allows the application to create normal
TCP connections and keeps the multipath splitting transparent.

We chose the sites at the Simula Research Laboratory
near Oslo (NorNet’s home) and one in Longyearbyen, just
1300 km from the North pole, in the Svalbard archipelago. The
switch on the sender side was configured to rewrite the layer-3
source/destination addresses to trigger the Weighted Round
Robin Scheduling and forward packets onto their selected path.
The receiving switch performed the reverse address mapping.

1) TCP Goodput: We first tested the scheduling without any
reordering buffer between two endpoints with paths of equal
capacity to determine how many packets would arrive out-of-
order and cause performance degradation. We used two of the
multiple paths/ISP combinations between both endpoints, which
had at least 10 Mbit/s of capacity. As discussed in Section III-E,
we manually set the weights for both paths in the scheduler.
We set them to equal values. Both paths have RTTs around
40 ms.

11https://www.nntb.no/
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Figure 7: TCP sequence numbers at the receiver.

Figure 6 shows the goodput over 140 seconds as measured by
iperf 3 periodic reports, with the default settings. Multipath
forwarding succeeds in aggregating paths capacities, resulting
in a roughly doubled throughput, compared to single-path.

As Figure 7 shows, the TCP sequence numbers at the
receiving end are growing almost monotonically, showing only
very light packet reordering. It is interesting to note the jagged
profile of the curve, where bursts of packets arrive at different
rates, depending on which paths they had been forwarded on.
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Figure 8: Multipath throughput with different traffic types.

2) Application use-cases: We continued with the same
configuration, and experimented with a number of differ-
ent application workloads. We first tested with the same
setup, but also launched netperfmeter using TCP and
the default flow settings, which attempts to maximise the
throughput. We then ran two other experiments. We used
Python’s SimpleHTTPServer12 module and wget13 to
simulate the transfer of a 70MB file over HTTP, and over
FTP using vsftpd.14

Figure 8 shows our results. Multipath forwarding consistently
delivered on its promise of capacity aggregation. This is best
shown for applications which actively attempt to saturate the
network capacity, but all significantly benefit from MPSDN.

V. DISCUSSION AND LESSONS LEARNT

In this section, we reflect on the proposed architecture,
influence of the design choices, and resulting performance

12https://docs.python.org/2/library/simplehttpserver.html
13https://www.gnu.org/software/wget/
14https://security.appspot.com/vsftpd.html



and usability of MPSDN.
1) Impact of buffer and MDI: The MDI proved to perform

quite well in our experiments. However, all our measurements
have a somewhat similar latency (with the faster path usually
having a latency of either 10ms or 25ms). We later realised
that using a purely relative measurement for the imbalance
does not allow the MDI to work equally well for all latencies.
It needs to be refined to also incorporate the absolute difference
between the latencies.

2) Path selection: In the evaluated version of our proposal,
we did not consider a dynamic and continuous estimation of
the paths’ capacity, but rather focused on the feasibility of our
solution in a stable environment. We showed in this context that,
in conjunction with the MDI metric, it was possible to identify
suitable complementary paths. Nonetheless, as future work,
we plan to investigate the possible addition of a measurement
mechanism (active or passive) to estimate these capacities. In
particular, we aim to determine the trade-off between adding
more measurements and accidentally contributing to congestion.
It might also be worthwhile to replace a currently-congested
path with another, uncongested, path.

3) Impact on Vanilla TCP: Our solution successfully enables
transparent capacity aggregation by scheduling bursts of packets
on different paths, and prevents spurious retransmissions by
reordering datagrams before delivering them to the end node.
Nonetheless, TCP’s control loop can become disrupted due
to transient issues on any single path, leading to performance
degradation for the whole transfer.

This is due to the fact that the TCP has no knowledge of the
use of multiple paths. Its RTT estimate is that of the longer
path and reordering buffer, while its congestion window covers
the aggregated capacity. In case one path experiences a spike
in delays, or a burst of losses, TCP will react by reducing its
sending rate for the whole transfer. As a result, only paths
of similar characteristics (as determined by metrics such as
the MDI) will aggregate well, but the throughput will be very
sensitive to the performance of the worst path.

4) Comparison to MPTCP: Even without a reordering
buffer, our in-network multipath solution achieves a very good
aggregated bandwidth and similar goodputs as MPTCP while
not requiring end-host support.

An SDN solution, with its advantages of being network
stack-agnostic, can achieve a performance that is similar to
that of MPTCP. While MPTCP’s challenge is endpoint support,
the challenge with MPSDN lies in determining the parameters
for path setup and packet reordering.

5) Ease of deployability: Our MPSDN proposal reduces the
deployability issues seen with MPTCP. While each end-host
needs to be separately enabled to support MPTCP, MPSDN
only requires leaf networks to deploy at least one edge switch
supporting our extensions to provide multipath connectivity
from all hosts on that network to any other MPSDN-enabled
network. Some deployment considerations were however not
addressed, such as when two MPSDN networks are not under
the jurisdiction of the same controller. Access control and
delegation in SDN is beyond the scope of this paper, but

can be adequately addressed by a broader research agenda in
SDN [e.g., 40].

VI. CONCLUSION

We have presented a solution to enable the use of multiple
paths in a layer-2 or -3 topology. The main objective is to use
alternate paths in parallel to aggregate capacity and provide
higher goodputs. Unlike solutions such as MPTCP or CMT-
SCTP, our approach leverages an SDN infrastructure to provide
path selection, packet scheduling, and packet reordering in
the network, without the need to modify the endpoints. We
have evaluated the solution in a range of emulated scenarios
and showed that it is able to adequately provide capacity-
aggregation benefits that are similar to what MPTCP achieves.
We have also demonstrated the deployability of the solution in
a real multi-homed scenario over the Internet.

Our work highlighted the need that the various aspects
of multipath transfer are addressed in the right layer—path
discovery and selection belongs in the network, but the transport
needs to be aware of the existence of multiple paths and manage
them separately—and a richer communication between those
layers to support it. Future work should study how this split can
best be achieved. Unfortunately, TCP/IP networks are poorly
equipped for a lightweight upgrade that could unlock the full
potential of multiple paths.
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